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(i)  SOLUTION OF THE EQUATION OF MOTION 
 

 
The complete solution for z(t) consists of a Particular Integral and the solution to the 
Complementary Function.  The latter is simply the solution to the equivalent free 
vibration problem considered in Section A.  For non-zero damping, all free vibration 
solutions tend to zero as time tends to infinity and they describe the transient 
response of the structure due to the sudden start of the excitation.  In practice, the 
transient response normally decays quickly.  As an example, the graph below shows the 
complete solution for the response of a single-degree-of-freedom system due to the start 
of a cosine wave excitation.  Near the start, we see the decaying transient response 
superimposed on the particular integral solution. 
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After the transient response has decayed, we are left with the particular integral, which 
continues for as long as the excitation remains.  It’s normally called the stead-state 
response and, in most cases, this is all we are interested in. 
 

 
METHOD 1 - DIRECT SUBSTITUTION 
 

Consider harmonic excitation of the form, 
 
For pure sinusoidal excitation, the response is also sinusoidal.  The response has the 
same frequency as the excitation, but the two are likely to have a phase difference (see 
page 2).  The key information we want from the analysis is the amplitude of the 
response and its phase relative to the excitation.  A suitable expression for the 
response is therefore 

      (1) 
 

 

where Z is the amplitude of the vibration and is the phase angle. 
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  t   F    t f ωcos
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To find Z and , we substitute for z(t) and its derivatives in the equation of motion, 

expand the various trigonometric terms and equate the coefficients of cos t  and  sin t. 

This gives 
 

 
     (2) 
 
 

and 
         (3) 
 
 
 
 
The following substitution is suggested in the Year 2 Mathematics module.  

 
 
This is an equally valid mathematical substitution.  If you choose to use this, you will 

then need to manipulate the coefficients A and B can to give the required amplitude and 

phase information. 
 
 
 

Q. What if the excitation had been written in the form    ?ωsin   t   F    t f      

 
To find the amplitude and phase angle information in this case, we would put 

 
 

It is easy to show that the expressions for Z and  are the same as equations (2) and (3). 

 
 

 
 
Since the steady-state response to 
sinusoidal excitation is also sinusoidal and 
with the same frequency as the excitation, 
the key parameters to be identified are the 
amplitude and phase angle.  Instead of 
drawing conventional time waveforms, a 
convenient way of showing the amplitude 
and phase relationship between excitation 
and response is with a phasor diagram. 
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METHOD 2 - COMPLEX ALGEBRA 
 
This provides a mathematically convenient way of finding the amplitude and phase angle 
of the response.  It has the added advantage that the same mathematical approach can 
be extended to more complicated (and therefore more realistic) structures, to more 
general forms of excitation and to experimental testing and digital data analysis 
procedures.   
 
The substitutions used are always the same; that is, 
 

Put   tFtf ωie  (4) 

and  
  
 
  (5) 
 

where  
 
 

Differentiating   eω    and    eω i, ω i2ω i   t  * t*  Z     z Z     ztz    

 
When these are substituted into the equation of motion, we get 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Plotting Z* and F on the complex (Argand) plane, gives the same phasor diagram 

discussed before.  Note that in practice, the imaginary part of Z* is always negative.  

As a result,  is also negative, meaning that the response lags behind the excitation. 
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(ii)  FREQUENCY CHARACTERISTICS OF THE HARMONIC RESPONSE 
 
To see how the excitation frequency affects the response, we will consider the 
Frequency Response Function (FRF).  By definition, this is the Response / Unit 
Applied Force.  Note that it is used exclusively for FORCE excitation.   
 
Start with the general form of the equation of motion, 
 
 
 

Dividing by M and noting that  ω γ n 2    
M

C
   [prove this as an exercise], we get 

 
 
 
 
 

With   tFtf ωie  and   e
 ω i t* Z    tz   , 

 
 

The FRF is therefore:     ωωγ2iωω

11
ω 22

*

            
 

M
  

F

Z
H

n
  
n 

  (6) 

 
 
An alternative expression that emphasises the frequency dependence is obtained by 

dividing top and bottom by n
2 and noting that Mn

2 = K gives 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is clear from the above expressions that the response of the structure (its amplitude 

and phase angle) depends on the ratio between the excitation frequency, , and the 

undamped natural frequency,  n and on the damping ratio, . 
 
The graphs on the next page show how the FRF amplitude and phase angle vary with 
both frequency ratio and damping ratio.     
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Amplitude and phase angle of FRF plotted against frequency ratio 

 
 

The graphs have been plotted for several values of damping ratio.  Most structures have 
damping ratios of less that 0.1 and it can be seen that the resonant peak (the maximum 
response near the frequency ratio of 1.0) is large.  Increasing damping will reduce the 

height of this resonant peak1.  In the phase angle plot, we see that for low values of 

damping ratio, the phase angle is close to 0o (i.e., the response is roughly in phase with 
the excitation) for frequencies below the undamped natural frequency and close to -180o 
(roughly out-of-phase) above the undamped natural frequency. 

                                                 
1  The frequency giving the maximum response is called the resonant frequency.  With 

low damping, the resonant frequency, the undamped natural frequency and the 
damped natural frequency are all virtually identical.  For higher damping (look at the 

curve for  = 0.2), the resonant frequency is less than the undamped natural 

frequency.  
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Imaginary part of the FRF plotted against the real part ( = 0.1) 

 
 
Each point on the real vs imaginary plot shown above gives the phasor diagram we met 
before (the arrow illustrates one particular frequency).  Although not shown explicitly, we 
move around the plot as the frequency ratio varies.  Comparing this with the plot on 

page 5, when  = 0, the amplitude is 1.0 and the phase angle is 0o.  When  =  n, the 

phase angle is -90o and the response is purely imaginary.  As ω tends to infinity, the 
amplitude tends to zero and the phase angle tends to -180o. 
 
 
Experimental Modal Analysis 

The Frequency Response Function lies at the heart of experimental modal analysis, which 
aims to measure the natural frequencies, damping and mode shapes of real structures 
having many modes of vibration.   
 

FRFs can be measured by applying a known force to the structure at any point k, 

measuring its response at point j and then dividing one by the other.  That is: 
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A typical means to implement this in the real world is to utilize “impact testing” in which 
you will “tap” (relative to size) the structure with a specially instrumented hammer 
containing a force transducer.  An accelerometer attached to a point on the structure will 
measure the response.  This data is processed to give the FRF for that excitation 
position. 
 
The test structure has many natural frequencies and these will appear as peaks in the 
FRF amplitude plot.  There’s an example below showing 5 peaks for a simple beam. 
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In the vicinity of each natural frequency (one is highlighted in a box above), that 
particular mode tends to dominate the behaviour.  This is why the shapes of the 
amplitude and phase plots look very similar to the graphs on page 5. 
 
The measured FRF can be further processed to give the natural frequencies, damping 
and the vibration amplitude and phase for each mode at that test point.  In concept, this 
is done by using an analytical expression for the FRF (similar to equation (6) on page 4) 

as a fit function to the measured FRF to identify values of  n and  that give the best fit. 

For a multi-degree-of-freedom system, this fitting process also gives the mode shape 
amplitude and phase at the test point.  By making FRF measurements at several points, 
the overall deflected shape for each mode can be obtained.  As an example, the first 
mode shape for the test beam is shown below.  There are 18 test points here and the 
variation in vibration amplitude from point to point can be seen.  Starting with any of the 
points, it can also be seen that some of the other points are in phase with it, while others 
are 180º out of phase. 
  

 
 
 
 
A more comprehensive introduction to experimental modal analysis and the role of FRFs 
is given in a document available from the Moodle site.   
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Worked Examples for Harmonic Excitation 
 
 
 
1.  Single-Axle Caravan 
 

 
 
 
 
 
 
 
 
 
 

Equation of motion (derived previously) is: 
 

(1) 
 
Suppose the road profile is sinusoidal, so that the displacement input to the axle is:  
 
 
Q1.  How does suspension stiffness affect the response of the caravan? 
Q2.  Does vehicle speed affect the response? 
Q3.  How important are the dampers? 

 
The effective excitation frequency depends on the speed of the vehicle and on the 

wavelength of the road profile.  It is given by: 
λ

π2
ω

V
  rad/s. 

 

Substitutions for the equation of motion are:    t
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The amplitude of the response is given by:  
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(2) 

 
 

and the phase angle is:   
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The graph below shows the variation in response 
R

X *

 with frequency ratio2, which 

shows that this is a key factor affecting the response.  There are two features to note.  

(1) There is a resonant peak at a frequency ratio of about 1.  At low frequencies, the 

amplitude of the caravan is greater than the road input ( RX *
).  In effect, the 

suspension is amplifying the road motion. 

(2) At higher frequencies (frequency ratios > 1.5), the amplitude of the caravan is less 

than the road input ( RX *
).  In this case, the suspension is attenuating the road 

motion., leading to a smoother ride at higher speeds; the excitation frequency is 

proportional to the vehicle speed 
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So, 
Q1.  How does suspension stiffness affect the response of the caravan? 
Q2.  Does vehicle speed affect the response? 
 
(A)  What happens if the springs are very stiff?  How does speed affect the response? 
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(B)  What happens if the springs are very soft?  How does speed affect the response? 
 
 
 
 
 
 
 
 
 
 
What stiffness should the designer choose? 
 
High stiffness generally improves road holding and low stiffness generally improves ride 
comfort. 
 
 
 
Q3.  How important are the dampers? 
 
What happens if you remove the dampers? 
Does vehicle speed affect the response? 
 

If c = 0, 
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What damping value should the designer choose? 
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2.  Application of the Frequency Response Function 
 

 

Sketch the waveform of the steady-state vertical displacement of a reciprocating air 

compressor (mass, m = 4000 kg) operates at a crank speed, , of 300 rev/min.  The 

machine is supported on a set of four resilient mounts, which give an overall vertical 
stiffness of 2.5 MN/m and a damping ratio of 0.04.  The effect of the masses of the 
reciprocating pistons is to produce a vertical force on the compressor given by 
 
 
 
 
 
 
Solution method: The compressor can be modelled as a rigid mass and its mounts 

as a spring-damper combination.  Each sinusoidal term in the 
excitation will produce a steady-state response that is sinusoidal 
with the same frequency as the excitation.  For example, the 

term tS 11 ωcos  will produce a response in the form 

 111 αωcos tX .  We can use the frequency response function 

to do this.   
 
Once the response to each excitation term has been found, the 
total response is obtained by adding the two together. 
 

For each excitation term, we have   jjj
SHX  ω*

 so that 

  jjjj
SHXX  ω*

 where j = 1 or 2.  We can use the expressions on page 4 to 

work out the FRF and phase angle values. 
 
Using the data given,   
 

 S1 = 1283 N,  | H (1) | = 6.81 x 10-4 mm/N, 1 = -170˚,  X1 =  0.87 mm 

 S2 = 2961 N,  | H (2) | = 7.52 x 10-5 mm/N, 2 = -178˚,  X2 =  0.22 mm 
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Figure showing  111 αωcos tX  and  222 αωcos tX  
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The thick line shows the result of adding the two waveforms together. 
 

The term “primary” relates to the fact that the vibration frequency, 1, is equal to the 

rotational frequency of the crank.  The “secondary” component has a frequency that is 
twice the rotational frequency of the crank. 
 
 
 


